Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Euro Surveill ; 28(8)2023 02.
Article in English | MEDLINE | ID: covidwho-2258570

ABSTRACT

Effectiveness against severe COVID-19 of a second booster dose of the bivalent (original/BA.4-5) mRNA vaccine 7-90 days post-administration, relative to a first booster dose of an mRNA vaccine received ≥ 120 days earlier, was ca 60% both in persons ≥ 60 years never infected and in those infected > 6 months before. Relative effectiveness in those infected 4-6 months earlier indicated no significant additional protection (10%; 95% CI: -44 to 44). A second booster vaccination 6 months after the latest infection may be warranted.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Italy/epidemiology , RNA, Messenger , Vaccination
2.
Ann Ist Super Sanita ; 58(4): 227-235, 2022.
Article in English | MEDLINE | ID: covidwho-2255984

ABSTRACT

INTRODUCTION: Coronavirus disease 19 (COVID-19) is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To date, few data on clinical features and risk factors for disease severity and death by gender are available. AIM: The current study aims to describe from a sex/gender perspective the characteristics of the SARS-CoV-2 cases occurred in the Italian population from February 2020 until October 2021. METHOD AND RESULTS: We used routinely collected data retrieved from the Italian National Surveillance System. The highest number of cases occurred among women between 40 and 59 years, followed by men in the same age groups. The proportion of deaths due to COVID-19 was higher in men (56.46%) compared to women (43.54%). Most of the observed deaths occurred in the elderly. Considering the age groups, the clinical outcomes differed between women and men in particular in cases over 80 years of age; with serious or critical conditions more frequent in men than in women. CONCLUSIONS: Our data clearly demonstrate a similar number of cases in women and men, but with more severe disease and outcome in men, thus confirming the importance to analyse the impact of sex and gender in new and emerging diseases.


Subject(s)
COVID-19 , Male , Female , Humans , Aged, 80 and over , Aged , COVID-19/epidemiology , SARS-CoV-2 , Risk Factors , Italy/epidemiology
3.
Epidemiol Prev ; 44(5-6 Suppl 2): 70-80, 2020.
Article in Italian | MEDLINE | ID: covidwho-2240192

ABSTRACT

OBJECTIVES: to describe the integrated surveillance system of COVID-19 in Italy, to illustrate the outputs used to return epidemiological information on the spread of the epidemic to the competent public health bodies and to the Italian population, and to describe how the surveillance data contributes to the ongoing weekly regional monitoring and risk assessment system. METHODS: the COVID-19 integrated surveillance system is the result of a close and continuous collaboration between the Italian National Institute of Health (ISS), the Italian Ministry of Health, and the regional and local health authorities. Through a web platform, it collects individual data of laboratory confirmed cases of SARS-CoV-2 infection and gathers information on their residence, laboratory diagnosis, hospitalisation, clinical status, risk factors, and outcome. Results, for different levels of aggregation and risk categories, are published daily and weekly on the ISS website, and made available to national and regional public health authorities; these results contribute one of the information sources of the regional monitoring and risk assessment system. RESULTS: the COVID-19 integrated surveillance system monitors the space-time distribution of cases and their characteristics. Indicators used in the weekly regional monitoring and risk assessment system include process indicators on completeness and results indicators on weekly trends of newly diagnosed cases per Region. CONCLUSIONS: the outputs of the integrated surveillance system for COVID-19 provide timely information to health authorities and to the general population on the evolution of the epidemic in Italy. They also contribute to the continuous re-assessment of risk related to transmission and impact of the epidemic thus contributing to the management of COVID-19 in Italy.


Subject(s)
COVID-19/epidemiology , Population Surveillance , SARS-CoV-2 , Hospitalization/statistics & numerical data , Humans , Information Dissemination , Italy/epidemiology , Population Surveillance/methods , Research Report , Risk
4.
Vaccine ; 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2229846

ABSTRACT

Several countries started a 2nd booster COVID-19 vaccination campaign targeting the elderly population, but evidence around its effectiveness is still scarce. This study aims to estimate the relative effectiveness of a 2nd booster dose of COVID-19 mRNA vaccine in the population aged ≥ 80 years in Italy, during predominant circulation of the Omicron BA.2 and BA.5 subvariants. We linked routine data from the national vaccination registry and the COVID-19 surveillance system. On each day between 11 April and 6 August 2022, we matched 1:1, according to several demographic and clinical characteristics, individuals who received the 2nd booster vaccine dose with individuals who received the 1st booster vaccine dose at least 120 days earlier. We used the Kaplan-Meier method to compare the risks of SARS-CoV-2 infection and severe COVID-19 (hospitalisation or death) between the two groups, calculating the relative vaccine effectiveness (RVE) as (1 - risk ratio)X100. Based on the analysis of 831,555 matched pairs, we found that a 2nd booster dose of mRNA vaccine, 14-118 days post administration, was moderately effective in preventing SARS-CoV-2 infection compared to a 1st booster dose administered at least 120 days earlier [14.3 %, 95 % confidence interval (CI): 2.2-20.2]. RVE decreased from 28.5 % (95 % CI: 24.7-32.1) in the time-interval 14-28 days to 7.6 % (95 % CI: -14.1 to 18.3) in the time-interval 56-118 days. However, RVE against severe COVID-19 was higher (34.0 %, 95 % CI: 23.4-42.7), decreasing from 43.2 % (95 % CI: 30.6-54.9) to 27.2 % (95 % CI: 8.3-42.9) over the same time span. Although RVE against SARS-CoV-2 infection was much reduced 2-4 months after a 2nd booster dose, RVE against severe COVID-19 was about 30 %, even during prevalent circulation of the Omicron BA.5 subvariant. The cost-benefit of a 3rd booster dose for the elderly people who received the 2nd booster dose at least four months earlier should be carefully evaluated.

5.
Vaccine ; 41(7): 1286-1289, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2184287

ABSTRACT

From January 2020 to July 2022, 120 measles cases were reported to the Italian national surveillance system, of which 105 had symptom onset in 2020, nine in 2021 and six in the first seven months of 2022. This represents a sharp decline compared to the time period immediately preceding the COVID-19 pandemic, most likely due to the non-pharmaceutical interventions implemented to prevent SARS-CoV2 transmission. Of 105 cases reported in 2020, 103 acquired the infection before a national lockdown was instituted on 9 March 2020. Overall, one quarter of cases reported at least one complication. As non-pharmaceutical pandemic measures are being eased worldwide, and considering measles seasonality, infectiousness, and its potential severity, it is important that countries ensure high vaccination coverage and close immunity gaps, to avoid risk of future outbreaks.


Subject(s)
COVID-19 , Measles , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , RNA, Viral , Lifting , SARS-CoV-2 , Communicable Disease Control , Measles/epidemiology , Measles/prevention & control , Disease Outbreaks/prevention & control , Italy/epidemiology , Measles Vaccine , Vaccination
6.
Epidemiol Infect ; 150: e166, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-2036725

ABSTRACT

INTRODUCTION: EURO2020 generated a growing media and population interest across the month period, that peaked with large spontaneous celebrations across the country upon winning the tournament. METHODS: We retrospectively analysed data from the national surveillance system (indicator-based) and from event-based surveillance to assess how the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) changed in June-July 2021 and to describe cases and clusters linked with EURO2020. RESULTS: Widespread increases in transmission and case numbers, mainly among younger males, were documented in Italy, none were linked with stadium attendance. Vaccination coverage against SARS-CoV-2 was longer among cases linked to EURO2020 than among the general population. CONCLUSIONS: Transmission increased across the country, mainly due to gatherings outside the stadium, where, conversely, strict infection control measures were enforced. These informal 'side' gatherings were dispersed across the entire country and difficult to control. Targeted communication and control strategies to limit the impact of informal gatherings occurring outside official sites of mass gathering events should be further developed.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Italy/epidemiology , Male , Pandemics/prevention & control , Retrospective Studies , SARS-CoV-2
7.
Front Public Health ; 10: 948880, 2022.
Article in English | MEDLINE | ID: covidwho-1993909

ABSTRACT

Social media is increasingly being used to express opinions and attitudes toward vaccines. The vaccine stance of social media posts can be classified in almost real-time using machine learning. We describe the use of a Transformer-based machine learning model for analyzing vaccine stance of Italian tweets, and demonstrate the need to address changes over time in vaccine-related language, through periodic model retraining. Vaccine-related tweets were collected through a platform developed for the European Joint Action on Vaccination. Two datasets were collected, the first between November 2019 and June 2020, the second from April to September 2021. The tweets were manually categorized by three independent annotators. After cleaning, the total dataset consisted of 1,736 tweets with 3 categories (promotional, neutral, and discouraging). The manually classified tweets were used to train and test various machine learning models. The model that classified the data most similarly to humans was XLM-Roberta-large, a multilingual version of the Transformer-based model RoBERTa. The model hyper-parameters were tuned and then the model ran five times. The fine-tuned model with the best F-score over the validation dataset was selected. Running the selected fine-tuned model on just the first test dataset resulted in an accuracy of 72.8% (F-score 0.713). Using this model on the second test dataset resulted in a 10% drop in accuracy to 62.1% (F-score 0.617), indicating that the model recognized a difference in language between the datasets. On the combined test datasets the accuracy was 70.1% (F-score 0.689). Retraining the model using data from the first and second datasets increased the accuracy over the second test dataset to 71.3% (F-score 0.713), a 9% improvement from when using just the first dataset for training. The accuracy over the first test dataset remained the same at 72.8% (F-score 0.721). The accuracy over the combined test datasets was then 72.4% (F-score 0.720), a 2% improvement. Through fine-tuning a machine-learning model on task-specific data, the accuracy achieved in categorizing tweets was close to that expected by a single human annotator. Regular training of machine-learning models with recent data is advisable to maximize accuracy.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Language , Machine Learning , Pandemics
8.
Front Public Health ; 10: 824465, 2022.
Article in English | MEDLINE | ID: covidwho-1952762

ABSTRACT

In the context of the European Joint Action on Vaccination, we analyzed, through quantitative and qualitative methods, a random sample of vaccine-related tweets published in Italy between November 2019 and June 2020, with the aim of understanding how the Twitter conversation on vaccines changed during the first phase of the pandemic, compared to the pre-pandemic months. Tweets were analyzed by a multidisciplinary team in terms of kind of vaccine, vaccine stance, tone of voice, population target, mentioned source of information. Multiple correspondence analysis was used to identify variables associated with vaccine stance. We analyzed 2,473 tweets. 58.2% mentioned the COVID-19 vaccine. Most had a discouraging stance (38.1%), followed by promotional (32.5%), neutral (22%) and ambiguous (2.5%). The discouraging stance was the most represented before the pandemic (69.6%). In February and March 2020, discouraging tweets decreased intensely and promotional and neutral tweets dominated the conversation. Between April and June 2020, promotional tweets remained more represented (36.5%), followed by discouraging (30%) and neutral (24.3%). The tweets' tone of voice was mainly polemical/complaining, both for promotional and for discouraging tweets. The multiple correspondence analysis identified a definite profile for discouraging and neutral tweets, compared to promotional and ambiguous tweets. In conclusion, the emergence of SARS-CoV-2 caused a deep change in the vaccination discourse on Twitter in Italy, with an increase of promotional and ambiguous tweets. Systematic monitoring of Twitter and other social media, ideally combined with traditional surveys, would enable us to better understand Italian vaccine hesitancy and plan tailored, data-based communication strategies.


Subject(s)
COVID-19 , Social Media , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Communication , Humans , Pandemics , SARS-CoV-2
9.
Lancet ; 400(10346): 97-103, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1921470

ABSTRACT

BACKGROUND: By April 13, 2022, more than 4 months after the approval of BNT162b2 (Pfizer-BioNTech) for children, less than 40% of 5-11-year-olds in Italy had been vaccinated against COVID-19. Estimating how effective vaccination is in 5-11-year-olds in the current epidemiological context dominated by the omicron variant (B.1.1.529) is important to inform public health bodies in defining vaccination policies and strategies. METHODS: In this retrospective population analysis, we assessed vaccine effectiveness against SARS-CoV-2 infection and severe COVID-19, defined as an infection leading to hospitalisation or death, by linking the national COVID-19 surveillance system and the national vaccination registry. All Italian children aged 5-11 years without a previous diagnosis of infection were eligible for inclusion and were followed up from Jan 17 to April 13, 2022. All children with inconsistent vaccination data, diagnosed with SARS-CoV-2 infection before the start date of the study or without information on the municipality of residence were excluded from the analysis. With unvaccinated children as the reference group, we estimated vaccine effectiveness in those who were partly vaccinated (one dose) and those who were fully vaccinated (two doses). FINDINGS: By April 13, 2022, 1 063 035 (35·8%) of the 2 965 918 children aged 5-11 years included in the study had received two doses of the vaccine, 134 386 (4·5%) children had received one dose only, and 1 768 497 (59·6%) were unvaccinated. During the study period, 766 756 cases of SARS-CoV-2 infection and 644 cases of severe COVID-19 (627 hospitalisations, 15 admissions to intensive care units, and two deaths) were notified. Overall, vaccine effectiveness in the fully vaccinated group was 29·4% (95% CI 28·5-30·2) against SARS-CoV-2 infection and 41·1% (22·2-55·4) against severe COVID-19, whereas vaccine effectiveness in the partly vaccinated group was 27·4% (26·4-28·4) against SARS-CoV-2 infection and 38·1% (20·9-51·5) against severe COVID-19. Vaccine effectiveness against infection peaked at 38·7% (37·7-39·7) at 0-14 days after full vaccination and decreased to 21·2% (19·7-22·7) at 43-84 days after full vaccination. INTERPRETATION: Vaccination against COVID-19 in children aged 5-11 years in Italy showed a lower effectiveness in preventing SARS-CoV-2 infection and severe COVID-19 than in individuals aged 12 years and older. Effectiveness against infection appears to decrease after completion of the current primary vaccination cycle. FUNDING: None. TRANSLATION: For the Italian translation of the summary see Supplementary Materials section.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Retrospective Studies , SARS-CoV-2
10.
Euro Surveill ; 27(20)2022 05.
Article in English | MEDLINE | ID: covidwho-1862542

ABSTRACT

We explored the risk factors associated with SARS-CoV-2 reinfections in Italy between August 2021 and March 2022. Regardless of the prevalent virus variant, being unvaccinated was the most relevant risk factor for reinfection. The risk of reinfection increased almost 18-fold following emergence of the Omicron variant compared with Delta. A severe first SARS-CoV-2 infection and age over 60 years were significant risk factors for severe reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Middle Aged , Protective Factors , Reinfection
11.
Expert Rev Vaccines ; 21(7): 975-982, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778823

ABSTRACT

BACKGROUND: Consolidated information on the effectiveness of COVID-19 booster vaccination in Europe are scarce. RESEARCH DESIGN AND METHODS: We assessed the effectiveness of a booster dose of an mRNA vaccine against any SARS-CoV-2 infection (symptomatic or asymptomatic) and severe COVID-19 (hospitalization or death) after over two months from administration among priority target groups (n = 18,524,568) during predominant circulation of the Delta variant in Italy (July-December 2021). RESULTS: Vaccine effectiveness (VE) against SARS-CoV-2 infection and, to a lesser extent, against severe COVID-19, among people ≥60 years and other high-risk groups (i.e. healthcare workers, residents in long-term-care facilities, and persons with comorbidities or immunocompromised), peaked in the time-interval 3-13 weeks (VE against infection = 67.2%, 95% confidence interval (CI): 62.5-71.3; VE against severe disease = 89.5%, 95% CI: 86.1-92.0) and then declined, waning 26 weeks after full primary vaccination (VE against infection = 12.2%, 95% CI: -4.7-26.4; VE against severe disease = 65.3%, 95% CI: 50.3-75.8). After 3-10 weeks from the administration of a booster dose, VE against infection and severe disease increased to 76.1% (95% CI: 70.4-80.7) and 93.0% (95% CI: 90.2-95.0), respectively. CONCLUSIONS: These results support the ongoing vaccination campaign in Italy, where the administration of a booster dose four months after completion of primary vaccination is recommended.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
13.
Vaccine ; 40(13): 1987-1995, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1689017

ABSTRACT

National immunisation programmes require an adequate supply of vaccines to function properly but many countries, globally and in Europe, have reported vaccine shortages. A comprehensive view of vaccine shortages and stockouts in the EU/EEA is missing in the published literature. This study was conducted in the framework of the European Joint Action on Vaccination (EU-JAV). Twenty-eight countries, including 20 EU-JAV consortium member states and an additional 8 EU/EEA countries, were invited to participate in a survey aimed at collecting information on vaccine shortages and stock-outs experienced from 2016 to 2019, their main causes, actions taken, and other aspects of vaccine supply. Twenty-one countries completed the survey (response rate 75%), of which 19 reported at least one shortage/stock-out event. Overall, 115 events were reported, 28 of which led to a change in the national immunisation programme. The most frequently involved vaccines were DT- and dT-containing combination vaccines, hepatitis B, hepatitis A, and BCG vaccines. The median duration of shortages/stock-outs was five months (range <1 month-39 months). Interruption in supply and global shortage were the most frequently indicated causes. Only about half of countries reported having an immunization supply chain improvement plan. Similarly, only about half of countries had recommendations or procedures in place to address shortages/stockouts. The survey also identified the occurrence of shortages/stockouts of other biological products (e.g. diphtheria antitoxin in 12 countries). Public health strategies to assure a stable and adequate vaccine supply for immunization programmes require coordinated actions from all stakeholders, harmonized definitions, strengthening of reporting and monitoring systems, the presence of an immunization supply chain improvement plan in all countries, and procedures or recommendations in place regarding the use of alternative vaccines or vaccination schedules in case of shortages/stockouts.


Subject(s)
Public Health , Vaccination , BCG Vaccine , Europe , Immunization Programs/methods
14.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1554857

ABSTRACT

Ensuring timely access to affordable vaccines has been acknowledged as a global public health priority, as also recently testified by the debate sparked during the COVID-19 pandemic. Effective vaccine procurement strategies are essential to reach this goal. Nevertheless, this is still a neglected research topic. A narrative literature review on vaccine procurement was conducted, by retrieving articles from four academic databases (PubMed/MEDLINE, Scopus, Embase, WebOfScience), 'grey' literature reports, and institutional websites. The aim was to clarify key concepts and definitions relating to vaccine procurement, describe main vaccine procurement methods, and identify knowledge gaps and future perspectives. A theoretical conceptual framework was developed of the key factors involved in vaccine procurement, which include quality and safety of the product, forecasting and budgeting, procurement legislation, financial sustainability, and plurality of manufacture, contracting, investment in training, storage and service delivery, monitoring and evaluation. This information can be useful to support policymakers during planning, implementation, and evaluation of regional and national vaccine procurement strategies and policies.

16.
Vaccine ; 39(34): 4788-4792, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1301034

ABSTRACT

In Italy, the COVID-19 vaccination campaign started in December 2020 with the vaccination of healthcare workers (HCW). To analyse the real-life impact that vaccination is having on this population group, we measured the association between week of diagnosis and HCW status using log-binomial regression. By the week 22-28 March, we observed a 74% reduction (PPR 0.26; 95% CI 0.22-0.29) in the proportion of cases reported as HCW and 81% reduction in the proportion of symptomatic cases reported as HCW, compared with the week with the lowest proportion of cases among HCWs prior to the vaccination campaign (31 August-7 September). The reduction, both in relative and absolute terms, of COVID-19 cases in HCWs that started around 30 days after the start of the vaccination campaign suggest that COVID-19 vaccines are being effective in preventing infection in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Personnel , Humans , Italy/epidemiology , SARS-CoV-2 , Vaccination
19.
Euro Surveill ; 25(49)2020 12.
Article in English | MEDLINE | ID: covidwho-972067

ABSTRACT

BackgroundOn 20 February 2020, a locally acquired coronavirus disease (COVID-19) case was detected in Lombardy, Italy. This was the first signal of ongoing transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the country. The number of cases in Italy increased rapidly and the country became the first in Europe to experience a SARS-CoV-2 outbreak.AimOur aim was to describe the epidemiology and transmission dynamics of the first COVID-19 cases in Italy amid ongoing control measures.MethodsWe analysed all RT-PCR-confirmed COVID-19 cases reported to the national integrated surveillance system until 31 March 2020. We provide a descriptive epidemiological summary and estimate the basic and net reproductive numbers by region.ResultsOf the 98,716 cases of COVID-19 analysed, 9,512 were healthcare workers. Of the 10,943 reported COVID-19-associated deaths (crude case fatality ratio: 11.1%) 49.5% occurred in cases older than 80 years. Male sex and age were independent risk factors for COVID-19 death. Estimates of R0 varied between 2.50 (95% confidence interval (CI): 2.18-2.83) in Tuscany and 3.00 (95% CI: 2.68-3.33) in Lazio. The net reproduction number Rt in northern regions started decreasing immediately after the first detection.ConclusionThe COVID-19 outbreak in Italy showed a clustering onset similar to the one in Wuhan, China. R0 at 2.96 in Lombardy combined with delayed detection explains the high case load and rapid geographical spread. Overall, Rt in Italian regions showed early signs of decrease, with large diversity in incidence, supporting the importance of combined non-pharmacological control measures.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/transmission , Female , Health Personnel/statistics & numerical data , Humans , Italy/epidemiology , Male , Middle Aged , Mortality , SARS-CoV-2
20.
Environ Res ; 191: 110231, 2020 12.
Article in English | MEDLINE | ID: covidwho-785565

ABSTRACT

The COVID-19 pandemic started in China in early December 2019, and quickly spread around the world. The epidemic gradually started in Italy at the end of February 2020, and by May 31, 2020, 232,664 cases and 33,340 deaths were confirmed. As a result of this pandemic, the Italian Ministerial Decree issued on March 11, 2020, enforced lockdown; therefore, many social, recreational, and cultural centers remained closed for months. In Apulia (southern Italy), all non-urgent hospital activities were suspended, and some wards were closed, with a consequent reduction in the use of the water network and the formation of stagnant water. This situation could enhance the risk of exposure of people to waterborne diseases, including legionellosis. The purpose of this study was to monitor the microbiological quality of the water network (coliforms, E. coli, Enterococci, P. aeruginosa, and Legionella) in three wards (A, B and C) of a large COVID-19 regional hospital, closed for three months due to the COVID-19 emergency. Our study revealed that all three wards' water network showed higher contamination by Legionella pneumophila sg 1 and sg 6 at T1 (after lockdown) compared to the period before the lockdown (T0). In particular, ward A at T1 showed a median value = 5600 CFU/L (range 0-91,000 CFU/L) vs T0, median value = 75 CFU/L (range 0-5000 CFU/L) (p-value = 0.014); ward B at T1 showed a median value = 200 CFU/L (range 0-4200 CFU/L) vs T0, median value = 0 CFU/L (range 0-300 CFU/L) (p-value = 0.016) and ward C at T1 showed a median value = 175 CFU/L (range 0-22,000 CFU/L) vs T0, median value = 0 CFU/L (range 0-340 CFU/L) (p-value < 0.001). In addition, a statistically significant difference was detected in ward B between the number of positive water samples at T0 vs T1 for L. pneumophila sg 1 and sg 6 (24% vs 80% p-value < 0.001) and for coliforms (0% vs 64% p-value < 0.001). Moreover, a median value of coliform load resulted 3 CFU/100 ml (range 0-14 CFU/100 ml) at T1, showing a statistically significant increase versus T0 (0 CFU/100 ml) (p-value < 0.001). Our results highlight the need to implement a water safety plan that includes staff training and a more rigorous environmental microbiological surveillance in all hospitals before occupying a closed ward for a longer than one week, according to national and international guidelines.


Subject(s)
Coronavirus Infections , Legionella pneumophila , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , China/epidemiology , Escherichia coli , Humans , Italy/epidemiology , SARS-CoV-2 , Water , Water Microbiology , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL